Crystallography and Mineralogy

1.1. Course Number: GE 212

1.2. Contact Hours: 3-1-2 Credits: 13

1.3. Semester Offered: 2nd Year-Odd

1.4. Prerequisite: Basic knowledge of Geology, Physics, and Chemistry

1.5. Syllabus Committee Members: Dr. Alok Kumar Singh & Dr. Hemant Kumar Singh

2. Objective: Understanding the basic knowledge of crystals, crystal systems and minerals.

3. **Course Content:** Unit-wise distribution of content and number of lectures

Unit	Topics	Sub-topics	Lectures
1	Basic concept of Crystal form and Symmetry	Crystal Elements, symmetry, law of crystallography, classification of crystal systems, Miller indices and crystal forms.	6
2	Six Crystal Systems and stereographic projection	Symmetry character and form of normal classes of the following systems, Cubic, Tetragonal, Hexagonal, Orthorhombic, Monoclinic and Triclinic. Stereographic projection of symmetry elements and form.	7
3	Twinning and Twin Laws	common types of twins and their examples in minerals. Space Lattice and Symmetry of internal structures – 14 Bravais Lattice. Introduction to space group, Historical development of X-ray Crystallography, Bragg's Law and its derivation, X-rays in mineral science.	7
4	Structural classification of silicates	A detailed study of the vital silicate mineral groups: Nesosilicates, Sorosilicate, Ring Silicates, Inosilicates, Phyllosilicates, Tectosilicates, atomic classification structure, polymorphs/structural states, chemistry including the substitution of elements/solid solution and experimental work on pressure temperature stability of the minerals, modes of occurrence and alterations.	10
5	Mineral optics	Principles of optical mineralogy: polarized light; optical mineralogy; behavior of isotropic and anisotropic minerals in polarized light: Birefringence, refractive index, double refraction, sign of elongation, Pleochroism, extinction angle, 2V, dispersion in minerals and pleochroic scheme, Uniaxial and Biaxial minerals, Concept of optical Indicatrix-Uniaxial Indicatrix and Biaxial Indicatrix. Use of Indicatrix, relation	10

between crystallographic axes and the Indicatrix axes, Interference figures, Determination of 2V from Interference figures.	
Total	40

List of Experiments:

- Hand specimen identification of various rock forming minerals.
- Mineral Preparation for Microscopic study for determination of optical properties of common rock-forming minerals.
- Study of interference figures of uniaxial and biaxial crystals, determination of optic signs.
- Goniometer and its use in measuring the interfacial angle of crystals and calculation of the axial ratio.
- Representation of symmetry elements of crystals belonging to 32 classes of symmetry and study of their stereograms.

4. Readings:

4.1. Textbook:

- Cornelis Klein and Barbara Dutrow, The manual of Mineral Science, Wiley Publication 2007.
- Dana, E.S. and Ford, W.E.: A textbook of Mineralogy. Wiley Eastern Limited.
- Deer, W. A., Howie, R. A. and Zussman, J., An introduction to the rock forming
- Minerals, ELBS publication, 1962-1963.
- Nesse, W.D., Introduction to Optical mineralogy, 2008

4.2. Reference Books:

- P. F. Kerr, Optical Mineralogy, McGraw Hill Book Company
- P. K. Verma, Optical mineralogy, CRC press 200
- Putnis, Andrew. 1992: Introduction to Mineral Sciences. Cambridge Univ. Press
- Spear, F. S. (1993): Mineralogical phase equilibria and Pressure- Temperature-Time paths
- Berry, L.G., Mason, B. and Dietrich, R.V., 1983. Mineralogy CBS Publishers.

5. Outcome of the course:

On successful completion of this course, students will be able to:

 know about basic of crystals, crystal systems and minerals and their characteristics.

- Understand basic aspects of a crystal including the axes and system in which it usually crystallizes. It also includes the relationship of behavior of light and the crystals.
- Assess Optical mineralogy in detail from Mineral Preparation to Optical characteristics identification